
Argonaut	App-Authorization	Profile	Alignment	with	HEART	Profiles	
December	30,	2015	

	

Introduction	
At	the	December	meeting	of	the	Argonaut	Steering	Committee,	a	question	was	raised	regarding	
the	alignment	of	the	Argonaut	authorization	profiles	with	the	profiles	being	developed	by	
OpenID’s	Health	Relationship	Trust	(HEART)	Working	Group.		Specifically,	the	questioner	
wanted	to	make	sure	that	the	Argonaut	profiles	are	consistent	with	the	HEART	“low-level”	
profile	so	that	if	Argonaut	wanted	to	add	use-managed	access	in	the	future,	it	would	be	fairly	
easy	to	do	so.		The	purpose	of	this	paper	is	to	respond	to	this	query.	
	
The	HEART	Working	Group	states	as	its	purpose:	

“to	harmonize	and	develop	a	set	of	privacy	and	security	specifications	that	enable	an	
individual	to	control	the	authorization	of	access	to	RESTful	health-related	data	sharing	
APIs,	and	to	facilitate	the	development	of	interoperable	implementations	of	these	
specifications	by	others.”	(HEART	Working	Group	Charter)	

	
The	HEART	Working	Group	has	developed	the	following	three	DRAFT	specifications:	

1. Health	Relationship	Trust	Profile	for	OAuth	2.0			
2. Health	Relationship	Trust	Profile	for	OpenID	Connect	1.0	
3. Health	Relationship	Trust	Profile	for	User	Managed	Access	1.0	

	
OpenID	Connect	and	User	Managed	Access	(UMA)	are	built	on	OAuth	2.0,	which	HEART	
sometimes	referred	to	as	the	“low-level	profile.”		As	such,	the	OpenID	and	UMA	profiles	inherit	
all	requirements	in	the	OAuth	2.0	profile.			
	
In	addition,	the	HEART	Working	Group	has	produced	a	DRAFT	specification	specifying	FHIR-
based	scopes	for	HEART	OAuth	requests	entitled		Health	Relationship	Trust	Profile	for	Fast	
Health	Interoperability	Resources	(FHIR)	OAuth	2.0	Scopes.						
	
The	Argonaut	SMART	App	Authorization	Guide	specifies	OAuth	2.0	application	programming	
interfaces	that	enable	applications	to	retrieve	FHIR	resources,	and	to	request	end-user	OpenID	
authentication.			Thus	it	includes	aspects	of	both	the	HEART	OAuth	2.0	and	OpenID	Connect	1.0	
profiles,	but	does	not	explicitly	include	the	use	case	envisioned	for	UMA.		Most	importantly,	the	
Argonaut	app-authorization	profile	focuses	exclusively	on	authorization	for,	and	retrieval	of,	
FHIR	resources	held	by	Electronic	Health	Record	(EHR)	technology.		The	HEART	profiles	are	not	
healthcare-specific	at	all,	although	the	HEART	Project	currently	is	working	on	profiles	for	
accessing	FHIR	resources.			
	
The	Argonaut	SMART	App	Authorization	Guide	includes	the	option	for	an	EHR	authorization	
server	to	ask	the	individual	resource	owner	(presumably	end-user)	to	approve	or	disapprove	
authorization	for	an	app	to	access	the	individual’s	data	(a	core	OAuth	2.0	capability).		However;	



the	use	case	does	not	preclude	the	possibility	that	the	authorization	server	might	access	a	
database	of	accesses	that	the	individual	has	pre-approved	(i.e.,	UMA).		The	access	rules	and	
workflow	the	authorization	server	uses	to	mediate	an	access	request	is	internal	to	an	
organization	and	therefore	outside	the	scope	of	the	Argonaut	SMART	App	Authorization	Guide.		
	

Purpose	
The	purpose	of	this	analysis	is	to	identify	the	alignment	between	the	Argonaut	SMART	App	
Authorization	Guide	and	the	HEART	OAuth	2.0	and	OpenID	Connect	profiles.		The	aim	is	not	to	
declare	one	“superior”	over	the	other,	but	to	determine	whether	a	reasonable	path	exists	for	
the	Argonaut	profile	to	be	extended	to	include	the	HEART	functionality.			
	

Analysis	
The	table	below	compares	HEART	OAuth	2.0,	with	OpenID	Connect,	with	the	Argonaut	SMART	
App	Authorization	Guide.		This	analysis	is	based	upon	existing	HEART	and	Argonaut	
documentation,	and	incorporates	insights	from	principals	of	both	the	HEART	and	Argonaut	
Projects.			
	
Topic	 HEART	 Argonaut	App	Authorization	

1. Client	types	 “Full”	(confidential)	clients,	
browser-embedded,	direct-
access	clients	

Confidential	and	public	
clients	seeking	to	access	FHIR	
resources	held	by	an	EHR,	
and	launched	from	within	or	
outside	an	EHR			

Analysis:		No	basic	difference	in	client	types,	although	Argonaut	categorizes	clients	based	on	
their	capability	to	authenticate	themselves,	and	HEART	categorizes	clients	based	on	their	
architecture.			However,	a	fundamental	difference	between	the	HEART	profiles	and	the	
Argonaut	profile	is	that	Argonaut	focuses	on	queries	for	FHIR	resources	held	by	an	EHR.		As	
such,	the	Argonaut	profile	includes	a	set	of	additional	parameters	designed	to	support	
embedding	apps	within	EHRs,	and	launching	apps	from	patient	portals	–	both	of	which	are	
aimed	at	communicating	the	context	of	the	user	session	from	which	the	app	was	launched.		
These	launch-context	details	are	outside	the	scope	of	the	HEART	profiles.			

2. Authorization	grant	types	 Authorization	code	flow	for	
“full”	clients,	implicit	flow	for	
browser-embedded,	and	
client-credential	flow	for	
direct-access	

Authorization	code	flow	for	
both	confidential	and	public	
clients	(authorization-code	
flow	is	strongest	of	the	grant	
types	defined	in	OAuth	2.0)			

Analysis:		This	is	a	fundamental	difference.		The	authorization	code	flow	is	the	strongest	of	
grant	types	defined	in	OAuth	2.0.		We	would	encourage	HEART	to	consider	using	the	



Topic	 HEART	 Argonaut	App	Authorization	
authorization	code	grants	for	all	client	types	as	a	means	of	addressing	certain	types	of	errors	
that	developers	are	prone	to	make.				

3. Refresh	tokens	 Refresh	tokens	available	only	
for	“full”	clients		

Online_access	and	
offline_access	refresh	tokens	
supported	for	both	
confidential	and	public	
clients	

Analysis:		The	HEART	profiles	issue	refresh	tokens	only	to	“full”	(confidential)	clients.		Refresh	
tokens	are	useful	in	enforcing	the	“minimum	necessary”	rule	in	that	they	enable	
authorization	servers	to	issue	access	tokens	with	short	expiration	times,	with	the	option	to	
renew	them	using	longer-lived	refresh	tokens.		Also,	the	Argonaut	profile	anticipates	the	
need	for	some	apps	to	be	able	to	access	EHR	data	even	when	the	user	no	longer	is	using	the	
app.		So	we	provide	for	two	types	of	refresh	tokens:		“online-access,”	which	are	valid	only	
while	the	user	is	actively	using	the	app,	and	“offline-access,”	which	enable	the	client	to	
access	data	after	the	user	is	no	longer	active	on	the	application	(for	example,	to	periodically	
“ping”	an	EHR	for	a	lab	result).			

4. Client	registration	 Dynamic	registration	
recommended.		Must	include	
public	keys.	

Client	registration	pre-
condition	(static	or	dynamic	
acceptable).	

Analysis:		The	only	fundamental	difference	here	is	that	the	HEART	profiles	require	that	apps	
register	a	public	key	for	use	in	digitally	signing	JWT	authentication	tokens.		(see	#5	below)	

5. Client	authentication	 Full	and	direct	clients	must	
authenticate	using	JWT	client	
authentication,	with	private	
key	

Confidential	clients	must	
authenticate	themselves	
using	HTTP	Basic	(shared	
secret)	

Analysis:		The	HEART	profiles	require	the	use	of	digitally	signed	JWT	tokens	for	client	
authentication.		The	Argonaut	profile	uses	client	secrets	for	authentication.		The	use	cases	for	
the	Argonaut	app-authorization	profile	all	have	the	end-user	in	the	loop,	making	the	strength	
of	client-authentication	less	critical	than	in	the	cross-organizational	use	case,	the	profile	for	
which	we	do	use	JWT	authentication.			Clearly,	this	is	an	area	of	potential	future	alignment	
with	the	HEART	Project.	

6. Requests	to	auth	end-
point	

State	parameter	with	at	least	
128	bits	of	entropy	

State	parameter	with	at	least	
128	bits	of	entropy	

Analysis:		No	difference.	



Topic	 HEART	 Argonaut	App	Authorization	

7. Redirect	URI	 Clients	using	authorization	
code	or	implicit	grant	types	
must	register	full	redirect	
URIs	

All	clients	must	register	full	
redirect	URIs	

Analysis:		Same	as	#2	above.			

8. Dynamic	registration	 Authorization	servers	must	
support	dynamic	client	
registration,	and	clients	using	
authorization	code	or	implicit	
grant	types	MAY	register	
using	dynamic	registration	

Clients	must	register	with	
authorization	server;	method	
is	unspecified	

Analysis:		Argonaut	profile	leaves	the	client-registration	method	up	to	the	organization.				

9. OAuth	2.0	server	profile	 All	servers	must	conform	to	
applicable	recommendations	
in	Security	Considerations	
sections	of	RFC6749	
(Framework)	and	
recommendations	in	
RFC6819	(Threat	Model)	

Security	Considerations	of	
RFC6749,	and	
recommendations	in	
RFC5819	were	primary	
source	documents	for	
security	decisions	and	best	
practices,	but	are	not	
explicitly	called	out	as	
“requirements”	

Analysis:		HEART	and	Argonaut	use	the	same	source	for	security	requirements	and	
considerations.		

10. OpenID	Connect	service	
Discovery	

Authorization	server	must	
provide	OpenID	Connect	
service	discovery,	which	
requires	the	authorization	
server	to	publish	
authorization,	token,	
introspection,	and	revocation	
endpoint	URLs	

Authorization	server	must	
publish	authorize	and	token	
endpoint	URLs	in	FHIR	
conformance	statement;	API	
enables	client	to	request	
OpenID	token	and	profile	by	
including	in	scope		

Analysis:		Argonaut	uses	FHIR	resources	for	both	conformance	statement	(where	end-points	
are	defined)	and	for	OpenID	user	profiles.			



Topic	 HEART	 Argonaut	App	Authorization	

11. Access	tokens	 Must	be	digitally	signed	JWT	
bearer	tokens	

Must	be	bearer	tokens	
whose	format	is	determined	
by	the	issuing	organization	

Analysis:		An	access	token	is	effectively	an	“internal”	communication	between	the	
authorization	server	that	issues	the	token	and	the	resource	server	to	whom	the	token	is	
presented.		As	such,	the	Argonaut	Project	believes	that	the	choice	of	format	for	an	access	
token	should	be	a	decision	left	up	to	the	organization	holding	the	resource.			Note	that	the	
Argonaut	profile	does	not	preclude	the	use	of	JWT	bearer	tokens	as	access	tokens.			

12. Token	lifetimes	 Recommends	lifetimes	for	
different	types	of	tokens	
issued	to	different	types	of	
clients:	

• 	Clients	using	
authorization	code	grant	
type:		no	more	than	1	
hour	for	access	tokens,	
and	no	more	than	24	
hours	for	refresh	tokens	

• Clients	using	implicit-
grant	type:	no	more	than	
15	minutes	

• Clients	using	client	
credentials:	no	more	than	
6	hours	

(Only	authorization	code	
grant	type	is	supported)	
Recommends	no	more	than	
1-hour	lifetime	for	access	
tokens	and	no	more	than	24	
hours	for	refresh	tokens	

Analysis:		The	recommended	lifetime	for	access	tokens	for	clients	using	the	authorization	
code	grant	type	is	the	same	for	HEART	and	Argonaut.			

13. Token	revocation	and	
introspection	

Authorization	server	must	
support	token	revocation	
(RFC7009)	and	token	
introspection	(RFC7662)	

Token	revocation	and	
introspection	are	not	
addressed	

Analysis:		Token	revocation	and	introspection	are	internal	processes	that	may	be	useful	to	
individual	organizations,	but	are	not	strictly	required	for	interoperability.		We	would	note	
that	the	Argonaut	approach	of	issuing	longer-lived	refresh	tokens	along	with	short-expiration	
access	tokens	provides	authorization	servers	the	opportunity	to	effectively	“revoke”	an	
access	token	whenever	a	refresh	token	is	presented	to	exchange	for	a	new	access	token.		We	
would	welcome	feedback	from	Argonaut	implementers	regarding	their	view	of	these	
requirements.				



Topic	 HEART	 Argonaut	App	Authorization	

14. Resource	requests	 Resource	servers	must	
support	bearer	tokens	
passed	in	Authentication	
header	and	may	support	
form-parameter	or	query-
parameter	methods	

Resource	servers	must	
support	bearer	tokens	
passed	in	Authentication	
header;	use	cases	address	
queries	for	FHIR	resources		

Analysis:		The	Argonaut	profile	supports	queries	for	FHIR	resources.		As	such,	the	profile	
includes	an	approach	to	scoped	access	control	wherein	scopes	are	tied	to	FHIR	resource	
types	(e.g.,	“patient/Condition.read.”		HEART’s	profiles	do	not	impose	any	limitations	on	the	
scopes	with	which	they	can	be	used.			A	key	difference	between	the	two	profile	is	the	use	of	
the	“aud”	(audience)	parameter.		Although	both	profiles	require	that	the	“aud”	parameter	be	
included	in	the	authorization	request,	for	HEART,	the	“aud”	value	is	the	URL	of	the	
authorization	server’s	token	endpoint,	whereas	in	the	Argonaut	profile,	the	“aud”	value	
identifies	the		

15. Scopes	 Broad	statement	regarding	
scopes	for	protected	
resources	

Scopes	include	requests	for	
FHIR	resources	

Analysis:		This	is	simply	a	difference	in	focus	–	Argonaut	focuses	on	queries	for	FHIR	
resources.	

16. Advanced	security	
options	

Include	client	TLS	
authentication	and	proof-of-
possession	tokens	as	options	

Advanced	options	are	not	
included		

Analysis:		These	“options”	are	not	included	in	the	Argonaut	profile.				

17. Security	considerations	 Transactions	over	TLS,	and	
security	considerations	of	
RFC6749	and	RFC6819	

Transactions	over	TLS,	and	
security	considerations	of	
RFC6749	and	RFC6819	

Analysis:		Both	profiles	use	RFC6749	and	RFC6819	as	their	primary	sources	of	security	
requirements	and	recommendations.		However,	a	key	difference	is	the	use	of	the	“aud”	
(audience)	parameter	in	the	authorization	request.		The	HEART	profile	does	not	require	the	
“aud”	parameter,	but	mentions	that	an	authorization	server	“MAY”	use	this	parameter	to	
specify	an	array	of	identifier(s)	of	protected	resources	for	which	a	token	is	valid.		The	
Argonaut	profile	REQUIRES	the	use	of	the	“aud”	parameter	to	identify	the	resource	server	for	
which	the	access	token	is	valid	(i.e.,	the	resource	server	that	holds	the	FHIR	resource).		The	
use	of	the	“aud”	parameter	helps	prevent	leakage	of	a	valid	bearer	token	to	a	counterfeit	
resource	server,	and	is	consistent	with	guidance	provided	by	RFC6819.		Note	that	when	the	
client	is	launched	from	an	EHR,	the	EHR	passes	an	“iss”	parameter	containing	the	value	the	



Topic	 HEART	 Argonaut	App	Authorization	
client	then	passes	to	the	authorization	server	in	the	“aud”	parameter.		Although	the	OpenID	
Connect	1.0	Core	specification	defines	the	“iss”	(issuer)	parameter,	it	is	not	used	in	the	
HEART	specifications. 

 

18. ID	tokens	 ID	token	is	digitally	signed		 ID	token	is	digitally	signed	

Analysis:		No	difference.	

19. UserInfo	endpoint	 Servers	must	support	
UserInfo	endpoint		

User	profile	is	retrieved	as	
FHIR	resource	

Analysis:		HEART’s	authorization	server	(and	OpenID	provider)	returns	end-user	profile.		
Argonaut’s	clients	retrieve	user	profile	as	FHIR	resource	from	the	resource	server.					

20. Request	objects	 Clients	may	send	request	
objects		to	authorization	
endpoint		

Only	requests	for	FHIR	
resources	are	supported	

Analysis:		This	is	simply	a	difference	in	focus	–	Argonaut	focuses	on	queries	for	FHIR	
resources.	

21. Authentication	context	 ID	tokens	must	be	JWT	web	
tokens	and	must	include	acr	
(authentication	context	class	
reference)	and	amr	
(authentication	methods	
reference)	parameters		

ID	tokens	are	as	specified	in	
OpenID	Connect	Core	1.0	
specification	specification	--	
in	which	acr	and	amr	
parameters	are	optional	

Analysis:		Both	use	same	standard	–	OpenID	Connect	Core	1.0.			

	

Conclusion	
Both	the	HEART	OAuth	2.0	and	OpenID	Connect	profiles,	and	the	Argonaut	SMART	App-
Authorization	Guide	specify	profiles	for	using	RFC6749,	The	OAuth	2.0		Authorization	
Framework,	to	enable	applications	to	request	authorization	to	access	resources,	with	end-user	
input	into	the	authorization	decision.		The	principle	difference	is	that	the	Argonaut	profile	
focuses	on	authorizing	apps	to	access	FHIR	resources	held	by	EHR	technology,	whereas	the	
HEART	profiles	are	more	general.		Whereas	differences	exist,	none	of	these	differences	would	
preclude	the	Argonaut	Project	from	building	on	the	existing	profile	to	converge	with	the	HEART	
Project	for	future	use	cases.			


